Advanced Scientific Computing with R

1. Overview

Michael Hahsler

Southern Methodist University

September 3, 2015

BOBBY B. LYLE
SCHOOL OF ENGINEERING

These slides are largely based on "An Introduction to R" http://CRAN.R-Project.org/

Table of Contents

(1) What is R ?
(2) Installing R

3 A First Session
(4) R Basics
(5) Exercises

What is R ?

- R is "GNU S". S is a language for statisticians developed at Bell Laboratories by John Chambers et al.
- R is designed by John Chambers and developed by the R Foundation.
- R is a language and environment for statistical computing and graphics
- R is the de facto standard to develop statistical software
- R implements variety of statistical and graphical techniques (linear and nonlinear modeling, statistical tests, time series analysis, classification, clustering, ...)

What is R? (cont.)

R provides

- effective data handling and storage
- operators for calculations on arrays (matrices)
- a large, coherent, integrated collection of intermediate tools for data analysis
- graphical facilities for data analysis and display
- simple and effective programming language (conditionals, loops, user defined recursive functions)
- extension mechanism with a large collection of packages

Why R?

- R is Open-Source and free to use.
- R has a large and active community.
- R provides state-of-the-art algorithm (>7000 extension packages on CRAN, 2015).
- R creates beautiful visualizations (as seen in the New York Times and The Economist)
- R is used widely in industry. Revolution offers commercial solutions and is now owned by Microsoft.
- R can be easily paralellized.
- R is getting ready for big data (Revolution Analytics).

Table of Contents

(1) What is R ?

(2) Installing R
(3) A First Session
(4) R Basics
(5) Exercises

Installing R

R is available for Linux/Unix, Windows, OS X and as source code.
http://cran.r-project.org/

Table of Contents

(1) What is R ?

(2) Installing R

(3) A First Session

5 Exercises

A first session

Create a working directory and start R.

```
R> x <- 1:10
R> x
    [1] 1
R> y <- x + 1
R> y
    [1] }20.3\mp@code{4
R> ls()
    [1] "CRAN" "x" "y"
```

$R>q()$

How to get help

R comes with online help

```
R> ? ls
R> help("ls")
R> help.start()
R> ?? solve
```

Further help can be found at http://cran.r-project.org/

- Manuals section (read: "An Introduction to R")
- Task Views section to find packages
- Search section to find answers (mailing lists, etc.)

The R language

- R is case sensitive
- expressions are evaluated, printed and the result is lost unless assigned with <-
- Commands are separated either by a semi-colon (';'), or by a newline
- expressions are grouped by braces (\{ and \})
- Comments start with a number sign ('\#')

Data permanency

During an R session, objects are created and stored by name:

```
R> ls()
[1] "CRAN" "x" "y"
```

Objects are kept over several sessions in a file (.RData). Objects can be removed.

```
R> rm(x)
R> ls()
[1] "CRAN" "y"
```


Table of Contents

(1) What is R?
(2) Installing R
(3) A First Session
(4) R Basics

Vectors and assignment

Vectors are the basic data structure in R. Scalars do not exist! Almost all numbers are seen as "numeric" (double).

R> 1
[1] 1
$R>x<-c(10.4,5.6,3.1,6.4,21.7)$
R> x
[1] $10.4 \quad 5.6 \quad 3.1 \quad 6.4 \quad 21.7$
R> $1 / \mathrm{x}$
[1] 0.09620 .17860 .32260 .15620 .0461
R> $y<-c(x, 0, x)$
R> y

Vector arithmetic

```
R> x
```



```
R> y
    [1] 10.4 5.6 3.1 6.4 21.7 0.0 10.4 5.6 3.1 
R> x+y
    [1] 20.8 11.2 6.2 12.8 43.4 10.4 16.0
R> sum(x)
    [1] 47.2
R> length(x)
    [1] 5
```


Sequences and Integers

```
R> s1 <- 1:5
R> s1
[1] 1 2 3 4 5
R> storage.mode(s1)
[1] "integer"
R> s2 <- seq(-1, 1, by=.2)
R> s2
    [1] -1.0 -0.8 -0.6 -0.4 -0.2 0.0
R> rep(s1, times=2)
    [1] 1 2 3 4 5 1 2 3 4 5
R> rep(s1, each=2)
    [1] 1 1 2 2 3 3 4 4 5 5
```

Try? seq and ? rep

Logical vectors

```
R> x
    [1] 10.4 5.6 3.1 6.4 21.7
R> l <- x>13
R> l
    [1] FALSE FALSE FALSE FALSE TRUE
R> mode(l)
    [1] "logical"
R> as.numeric(l)
    [1] 0 0 0 0 1
```

The usual relational operators are available (e.g., <, <=, >, >=, ==, !=, \&, |). See ?"<" and ?"\&" (quotation marks are necessary!)

Missing Values/Infinity

```
R> z <- c(1:3,NA)
R> z
    [1] 1 2 3 NA
R> ind <- is.na(z)
R> ind
    [1] FALSE FALSE FALSE TRUE
R> 0/0
    [1] NaN
R> 2`5000
[1] Inf
```

See ?NA and ?Inf

Character vectors

```
R> string <- c("Hello", "Ola")
R> string
    [1] "Hello" "Ola"
R> paste(string, "World!")
[1] "Hello World!" "Ola World!"
R> labs <- paste(c("X","Y"), 1:10, sep="")
R> labs
    [1] "X1" "Y2" "X3" "Y4" "X5" "Y6" "X7" "Y8" "X9"
[10] "Y10"
```

See ?paste

Selecting and modifying subsets

```
R> x
    [1] 10.4 5.6 3.1 6.4 21.7
R> x[1]
    [1] 10.4
R> x[-1]
    [1] 5.6 3.1 6.4 21.7
R> x[2:4]
    [1] 5.6 3.1 6.4
R> x[x>7]
    [1] 10.4 21.7
R> x[x>7] <- NA
R> x
    [1] NA 5.6 3.1 6.4 NA
```


Selecting and modifying subsets II

```
R> fruit <- c(5, 10, 1, 20)
R> names(fruit) <- c("orange", "banana", "apple", "peach")
R> fruit
orange banana apple peach
    5 10 1 20
R> lunch <- fruit[c("apple","orange")]
R> lunch
    apple orange
    5
```

See ?" ["

Table of Contents

(1) What is R ?

(2) Installing R
(3) A First Session
(4) R Basics
(5) Exercises

Exercises

(1) Create a vector with 10 numbers $(3,12,6,-5,0,8,15,1,-10,7)$ by you and assign it to x.
(2) What is the "data type" of x ? How can you find out?

- Subtract 5 from the 2nd, 4th, 6th, etc. element in x.
- Compute the sum and the average for x (there are functions for that).
- Reverse the order of the elements in x .
(0) Find out which numbers in x are negative.
- Remove all entries with negative numbers from x .
(0) How long is x now (use a function).
- Remove x from the environment/workspace (session).
(1) Create the a vector of strings containing "CSE 8001", "CSE 8002", ..., "CSE 8100" using paste.

