Advanced Scientific Computing with R

2. Objects, Arrays, Lists, File I/O

Michael Hahsler

Southern Methodist University

September 3, 2015

BOBBY B. LYLE
SCHOOL OF ENGINEERING

These slides are largely based on "An Introduction to R" http://CRAN.R-Project.org/

Table of Contents

(1) Objects and Attributes
(2) Arrays
(3) Matrices
4. Lists
(5) Data Frames

6 File I/O
(7) Exercises

Intrinsic attributes: mode

All entities in R are called objects. Objects have the intrinsic attributes "mode" and "length".

```
R> x <- c(1.5, 2.6, 3.7)
R> mode(x)
[1] "numeric"
R> y <- as.character(x)
R> y
[1] "1.5" "2.6" "3.7"
R> mode(y)
[1] "character"
```

Modes are types "numeric", "complex", "logical", "character" and "raw".

Intrinsic attributes: length

```
R> x
[1] 1.5 2.6 3.7
R> length(x)
[1] 3
R> e <- numeric()
R> e
numeric(0)
R> length(e)
    [1] 0
R> e[5] <- 12
R> e
    [1] NA NA NA NA 12
R> length(e) <- 7
R> e
```

 [1] NA NA NA NA 12 NA NA

Regular attributes

```
R> z <- 1:4
R> z
[1] 1 2 3 4
R> attributes(z)
NULL
R> class(z)
[1] "integer"
R> attr(z, "dim") <- c(2,2)
R> z
    [,1] [,2]
[1,] 1 3
[2,] 2 4
R> attributes(z)
$dim
[1] 2 2
R> class(z)
[1] "matrix"
```

Regular attributes can be read and set using attr and attributes.

The dim attribute allows R to treat z as a matrix.
class() returns the class of an object. If the object does not have a class attribute (S3) or an implicite class (matrix, array, integer) then it returns the storage type (storage.mode).

Table of Contents

(1) Objects and Attributes

(2) Arrays
(3) Matrices

4 Lists
(5) Data Frames

6 File I/O
(7) Exercises

Arrays

Arrays are just vectors with a dim attribute.

```
R> x <- 1:8
R> dim(x) <- c(2,2,2)
R> x
, , 1
```

	$[, 1]$	$[, 2]$
$[1]$,	1	3
$[2]$,	2	4

, , 2

```
            [,1] [,2]
[1,] \(5 \quad 7\)
[2,] 6
R> \(x\) <- \(\operatorname{array}(1: 8, \operatorname{dim}=c(2,2,2))\)
\(\mathrm{R}>\mathrm{x}[2,2,2]\)
[1] 8
```


Table of Contents

(1) Objects and Attributes
(2) Arrays
(3) Matrices
4. Lists
(5) Data Frames

6 File I/O
(7) Exercises

Matrix: 2-dimensional arrays

```
R> x <- matrix(1:6, nrow=2, ncol=3)
R> x
        [,1] [,2] [,3]
    [1,] 1 3 5
[2,] 2 4 6
R> x[1,]
[1] 1 3 5
R> x[,2]
[1] 3 4
R> dim(x)
[1] 2 3
R> nrow(x)
[1] 2
R> ncol(x)
[1] 3
R> length(x)
[1] }
```


Matrix: Dimnames

```
R> colnames(x) <- c("X1", "X2", "X3")
R> x
    X1 X2 X3
    [1,] 1 3 5
    [2,] 2 4 6
R> rownames(x) <- c("Michael", "peter")
R> x
X1 X2 X3
Michael 1 3 5
peter 2 4 6
R> dimnames(x)
[[1]]
[1] "Michael" "peter"
[[2]]
[1] "X1" "X2" "X3"
```


Matrix: rbind, cbind

R> m1 <- matrix(TRUE, nrow=2, ncol=2)
R> m0 <- matrix(FALSE, nrow=2, ncol=2)
R> $\mathrm{x}<-\mathrm{cbind}(\mathrm{m} 0, \mathrm{~m} 1)$
R> x

$$
[, 1] \quad[, 2][, 3][, 4]
$$

[1,] FALSE FALSE TRUE TRUE
[2,] FALSE FALSE TRUE TRUE
R> x <- rbind $(x, \operatorname{cbind}(m 1, m 0))$
R> x

$$
[, 1] \quad[, 2] \quad[, 3] \quad[, 4]
$$

[1,] FALSE FALSE TRUE TRUE
[2,] FALSE FALSE TRUE TRUE
[3,] TRUE TRUE FALSE FALSE
[4,] TRUE TRUE FALSE FALSE

Matrix algebra

R> a <- 1:3			
R> $b<-3: 1$			
$\mathrm{R}>\mathrm{ab}$ <- outer (a, b,			
$R>a b$			
	[,1]	[,2]	[,3]
[1,]	3	2	1
[2,]	6	4	2
[3,]	9	6	3
$\mathrm{R}>\mathrm{t}(\mathrm{ab})$			
	[,1]	[,2]	$[, 3]$
[1,]	3	6	9
[2,]	2	4	6
[3,]	1	2	3
R> ab*ab			
	[,1]	[,2]	$[, 3]$
[1,]	9	4	1
[2,]	36	16	4
[3,]	81	36	9
R> ab \%*\% ab			
	[,1]	[,2]	$[, 3]$
[1,]	30	20	10
[2,]	60	40	20
[3,]	90	60	30

Other important facilities: crossprod, solve (linear equations), svd, eigen

Table of Contents

(1) Objects and Attributes
(2) Arrays
(3) Matrices

4 Lists
(5) Data Frames

6 File I/O
(7) Exercises

List

An R list is an object consisting of an ordered collection of objects known as its components.

```
R> lst <- list(name="Fred", wife="Mary", no.children=3,
+ child.ages=c(4,7,9))
R> lst
$name
[1] "Fred"
$wife
[1] "Mary"
$no.children
[1] 3
$child.ages
[1] 4 7 9
R> lst[[2]]
[1] "Mary"
R> lst$wife
[1] "Mary"
```

[^0]
Table of Contents

(1) Objects and Attributes
(2) Arrays
(3) Matrices
4. Lists
(5) Data Frames

6 File I/O
(7) Exercises

Data Frame

A data frame is a list with class "data.frame" that look like a matrix with mixed data types.

```
R> df <- data.frame(name = c("Michael", "Mark", "Maggie"),
children = c(2,0,2))
R> df
    name children
1 Michael 2
2 Mark 0
3 Maggie 2
R> df$name
[1] Michael Mark Maggie
Levels: Maggie Mark Michael
R> df[1,]
    name children
1 Michael 2
R> df[,1]
[1] Michael Mark Maggie
Levels: Maggie Mark Michael
```


Table of Contents

(1) Objects and Attributes
(2) Arrays
(3) Matrices
4. Lists
(5) Data Frames

6 File I/O
(7) Exercises

Simple File I/O

read.table() and write.table() can be used to read/write complete file to/from data.frames. The file format can be space or tab-separated, CSV, with our without column/row labels, etc.

```
R> df
    name children
1 Michael 2
2 Mark 0
3 Maggie 2
R> write.table(df, file="df.dat", sep=",")
R> df2 <- read.table("df.dat", sep=",")
R> df2
    name children
1 \text { Michael 2}
2 Mark 0
3 Maggie 2
R> unlink("df.dat")
```

See ?read.table and ?write.table for all options.

Accessing data sets

R (an extension packages) come with data sets. These sets can be loaded using data(). Without arguments data() shows all available data sets.

```
R> data(iris)
R> head(iris)
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
\begin{tabular}{llllll}
1 & 5.1 & 3.5 & 1.4 & 0.2 & setosa \\
2 & 4.9 & 3.0 & 1.4 & 0.2 & setosa \\
3 & 4.7 & 3.2 & 1.3 & 0.2 & setosa \\
4 & 4.6 & 3.1 & 1.5 & 0.2 & setosa \\
5 & 5.0 & 3.6 & 1.4 & 0.2 & setosa \\
6 & 5.4 & 3.9 & 1.7 & 0.4 & setosa
\end{tabular}
R> str(iris)
'data.frame': }150\mathrm{ obs. of 5 variables:
    $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9
    $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1
    $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4
1.5 ...
    $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2
0.1 ...
    $ Species : Factor w/ 3 levels
"setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
```


Table of Contents

(1) Objects and Attributes
(2) Arrays
(3) Matrices
4. Lists
(5) Data Frames
(6) File I/O
(7) Exercises

Exercises

(1) Create m , a 10×10 matrix filled with random numbers between 0 and 1 (use runif () to create the random numbers).
(2) Multiply m with itself (matrix multiplication).
(3) Extract a 3×3 submatrix (first 3 rows and first 3 columns) from m and call it n.
(9) Replace the first row of m with all 0 s .
(5) How many elements in m are larger than .5? Hint: You can use sum for this problem.
(0) Create a list called I with m and n as its two elements.
(1) Add a vector called count with the values 1,2 and 3 to 1
(8) Create a data.frame containing the names, year of birth, month of birth and day of birth as separate columns. Make sure the data.frame has column names (see colnames()).
(9) Write the data.frame to a file in CSV format.

[^0]: Lists can contain arbitrary R objects and can be combined with c() . Names can be retrieved and changes with names().

