Advanced Scientific Computing with R

4. Plots

Michael Hahsler

Southern Methodist University
February 16, 2014

These slides are largely based on "An Introduction to R" http://CRAN.R-Project.org/

Table of Contents

(1) Simple Plots

(2) High-level Graphics Functions

(3) Low-level Graphics Functions

(4) Exercises

Introduction

- Ploting is an integral part of R.
- R plots on devices (e.g., X11(), quarz(), windows(), pdf(), png())
- Plotting commands are divided into three basic groups:
- High-level plotting functions create a new plot on the graphics device, possibly with axes, labels, titles and so on.
- Low-level plotting functions add more information to an existing plot, such as extra points, lines and labels.
- Interactive graphics functions allow you interactively add information to, or extract information from, an existing plot, using a pointing device such as a mouse.

We will only discuss 'base' graphics. An advanced graphics sub-system called 'grid' also exists.

Table of Contents

(1) Simple Plots

(2) High-level Graphics Functions

(3) Low-level Graphics Functions

(4) Exercises

plot

```
R> plot(1:10)
```


plot

```
R> plot(1:10, type="l", col="red", lwd=3)
R> abline(v=5, lty=2)
```


Getting help for plot

>? plot
Shows that plot is a so called generic function. Generic functions have implementations dor different data types which get "dispatched" at call-time.
>? plot.default
This is the default function for plot.
>? par
Graphical parameters which typically can be passed on as ... to plot.

Scatterplot

```
R> plot(x=rnorm(500), y=rnorm(500), xlab="x", ylab="y",
+ main="Bi-variate Norm. Distr.")
```


Bi-variate Norm. Distr.

Scatterplot matrix (pairs)

```
R> data(iris)
R> head(iris, n=1)
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
\begin{tabular}{lccccc}
1 & 5.1 & 3.5 & 1.4 & 0.2 & setosa \\
R \(>\) plot (iris[,-5], col= iris[,5]) & & &
\end{tabular}
```


$\begin{array}{llll}4.5 & 5.5 & 6.5 & 7.5\end{array}$

hist - Histogram

R> hist(iris\$Sepal.Length, breaks=20)

Histogram of iris\$Sepal.Length

hist - Histogram with estimated density

```
R> hist(iris$Sepal.Length, breaks=20, prob=TRUE)
R> lines(density(iris$Sepal.Length), col="red")
```

Histogram of iris\$Sepal.Length

image

volcano is a R data set with elevation measurements of Maunga Whau on a 10 m by 10 m grid.

R> dim(volcano)
[1] 8761
R> image (volcano)

contour

R> contour(volcano)

persp

```
R> persp(volcano)
```


Typical Arguments for plot functions

- add=TRUE: Add to an existing plot?
- axes=FALSE: Plot axes?
- log="x", log="y" or log="xy": Log. axes?
- type="1": Plot lines instead of points
- xlab, ylab: Axis labels
- main: Figure title
- sub: Sub-title

Table of Contents

(1) Simple Plots

(2) High-level Graphics Functions
(3) Low-level Graphics Functions
(4) Exercises

Some low-level functions

These functions can be used to add elements to a plot.

- points(x, y)
- lines(x, y)
- text(x, y, labels, ...)
- abline(a, b) or abline(h=y) or abline(v=x)
- polygon(x, y, ...)
- legend(x, y, legend, ...)
- title(main, sub)
- axis(side, ...)

Graphical parameter list: par

R maintains a list of graphics parameters to control line style, colors, figure arrangement and text justification.
A separate list of graphics parameters is maintained for each active device.

R> oldpar <- par (col=4, pch=4)
R> par(oldpar)
Many parameters from par() can also be passed to plot().
Try par() and ?par

Important parameters in par

- pch=4: Plotting symbol (0-25)
- lty=2: Line type
- lwd=2: Line width
- col=2: Color for points, lines, etc.
- cex=1.5: Character expansion (e.g., 50% larger than default text size)
- mai=c (1, 0.5, 0.5, 0): Widths of the bottom, left, top and right margins, respectively, measured in inches.

Saving a plot as an image

```
R> png(file="plot.png")
R> plot(1:10)
R> dev.off()
pdf
    2
```

Other devices are jpeg(), tiff(), pdf(), postscript(),
win.metafile() (Windows).
Use ?Devices for a complete list.

Interactive and Advanced Graphics

Interactive Graphics are available via several extension packages:

- ggplot2: Grammar of graphics.
- rggobi: GGobi interactive graphics system.
- iplots: Java based plotting (alpha blending, brushing, selection, etc.)
- playwith: Build interactive versions of R graphics
- rgl: OpenGL

Advanced Graphics

- ggplot2: Grammar of graphics. Produces elegant visualizations (see http://ggplot2.org/).
- grid: Advanced graphics can be programmed using flexible low level ploting functions (viewports, different coordinate systems and units, lines, points, text, etc.) See also package lattice.

Table of Contents

(1) Simple Plots

(2) High-level Graphics Functions
(3) Low-level Graphics Functions
4. Exercises

Exercises

(1) Plot $a \sin (x) / x$. Hint: Trigonometric functions in R use angles in radians (see sin)
(2) The "cars" data set gives the speed of cars and the distances taken to stop. Note that the data were recorded in the 1920s. Plot the "cars" data set as a scatter plot. Plot all data points with distances taken to stop greater than 80 in red.
(3) Plot histograms for speed and dist in "cars".

