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A Great Infographic

Can | recommend anything else?

http://www.columnfivemedia.com/work-items/infographic-can-i-recommend-anything-else
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Recommender Systems

Original Definition

Recommender systems apply statistical and knowledge discovery
techniques to the problem of making product recommendations.
Sarwar et al. (2000)

Advantages of recommender systems (e.g., Schafer et al., 2001):
Improve conversion rate: Help customers find a product she/he wants to buy.

Cross-selling: Suggest additional and more diverse products.

°

°

@ Up-selling: Suggest premium products.

@ Improve customer satisfaction/loyalty: Create a value-added relationship.
°

Better understand what users want: Knowledge can be reused.
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A More General View of Recommender Systems

A recommender system is a fully automatic system to provide (near)
personalized decision support given limited information while optimizing a
set of potentially conflicting objective functions.

Michael Hahsler (EMIS/SMU) Recommender Systems 2016 9 / 56



A More General View of Recommender Systems

A recommender system is a fully automatic system to provide (near)
personalized decision support given limited information while optimizing a
set of potentially conflicting objective functions.

Design Space:

@ Domain - What are the recommended items? Products, info, etc.
Purpose - Why recommendations? Sales, building a community, etc.
Recommendation context - What is the user doing?

Whose opinions - Available data, incentives, quality.
Personalization level - From non-personalized to persistent.
Privacy and trust - Are the recommendations biased?

Interfaces - Data collection and presenting recommendations.

Used algorithms - Quality and speed.
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What Items to Recommend?

MovieLensel00k Data

Popularity (# of 4+ ratings)
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Movies sorted by popularity

Increase diversity by recommending less well known items.



Recommender System Architecture
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Source: Recommender Systems - An Introduction



Common Approaches

@ Non-Personalized recommendations: Recommendations by experts or
summary of community ratings.

Personalized Recommendations

@ Content-based filtering: Use consumer preferences for product
attributes.

o Collaborative filtering: Mimics word-of-mouth based on analysis of
rating/usage/sales data from many users.

@ Hybrid recommender systems: Incorporate content, collaborative
filtering, expert information and contextual information.
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Content-based Approach

Search [{]]

Movies - ™V - News ~ Videos ~ Community ~ IM|

[

YOU DON'T ! The Social Network (2010 s 95

120 min - Biography | Drama - 1 October 2010 (USA)

Your rating:
8.1~ Ratings: 8.1/10 from 141,802 users Metascore
[} 95, Reviews: 515 user | 459 critic | 42 from
Metacritic.com

A chronicle of the founding of Facebook, the social-
networking Web site.

Director: David Fincher

Writers: Aaron Sorkin , Ben Mezrich
Stars: Jesse Eisenberg, Andrew Garfield and Justin
Timberlake

© Analyze the objects (documents, video, music, etc.) and extract
attributes/features (e.g., words, phrases, actors, genre).

@ Recommend objects that match the user profile (e.g., with similar
attributes to an object the user likes).
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Lady Gaga PANDORA
Just Dance (Remix Single

Just Dance (Redone Remix F. Kardinal Offishall)

Play Sample

Features Of This Track

electronica roots
trip hop roots
) | Create A Station &b Influences
funk influences
beats made for dancing

[ E LI CRIc . @  unsyncopated ensemble rhythms

straight drum beats

Buy on ITunes j afemale vocal

clear pronunciation

Buy CD From Amazon _ JECRGVUIISUEG]

use of modal harmonies

Buy From Amazon MP3 the use of chordal patterning

melodic part writing
use of strings

subtle use of arpeggiated synths
affected synths

“The Music Genome Project is an effort to capture the essence of music at the

fundamental level using almost 400 attributes to describe songs and a complex

mathematical algorithm to organize them.”
http://en.wikipedia.org/wiki/Music_Genome_Project
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An issue with content based filtering?
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An issue with content based filtering?

Missing diversity!

Michael Hahsler (EMIS/SMU) Recommender Systems 2016 17 / 56



Table of Contents

@ Collaborative Filtering (CF)
@ Memory-based CF
@ Model-based CF

Michael Hahsler (EMIS/SMU) Recommender Systems 2016 18 / 56



Collaborative Filtering (CF)

Koren et al, "Matrix Factorization Technigues for
Recommender Systems," IEEE Compuiter, 2009

Make automatic predictions (filtering) about the interests of a user by collecting
preferences or taste information from many other users (collaboration).

Assumption: those who agreed in the past tend to agree again in the future.
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Data Collection

NETELIN il alos Vo il o o 3 ol
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Documentary
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Foreign
e .

@ Explicit: ask the user for ratings, rankings, list of favorites, etc.

@ Observed behavior (Implicit): clicks, page impressions, purchase, uses,
downloads, posts, tweets, etc.

What is the incentive structure?
Recommender Systems 2016 20 / 56



Output of a Recommender System

Suggestions (1141) Suggestions by Genre > Rale Movies | Fale Genres | Movies Youve Rated (262)
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@ Predict ratings of unrated movies (Breese et al., 1998).
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Kimble tries to find the true murderer,
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(Tommy Lee Jones, in an Oscar-winnin
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Starring: Harrison Ford, Tommy Lee Jones
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ARARA 4.7 Jnteno

41 Cusiomer Average

% Recommended based on 8 ratings

You have 1141 17
Suggestions |
from 262 ratings. !

[(EEGTaGT Robocop:

@ Top-N lists of unrated (unknown) movies ordered by predicted
rating/score(Deshpande and Karypis, 2004).

@ Annotation in context (e.g., in a electronic guide).

@ Recommend as sequence or a bundle.

How do you explain the recommendation to the user? — Trust

Michael Hahsler (EM

/SMU)
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Types of CF Algorithms

e Memory-based: Find similar users (user-based CF) or items
(item-based CF) to predict missing ratings.

e Model-based: Build a model from the rating data (clustering, latent
structure, etc.) and then use this model to predict missing ratings.
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User-based vs. Item-based CF
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Source: http://cuihelei.blogspot.com/2012/09/the-difference-among-three.html
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User-based CF

Produce recommendations based on the preferences of similar users (Goldberg et
al., 1992; Resnick et al., 1994; Mild and Reutterer, 2001).

6

i iy iy s g @
(2?2 4030 ? 1.0
u [ 2 4.0 40 20 1.0 2.0 T
3.0 ? ? ? 50 1.0 / AN
u3(3.0 2 2 3.0 20 20 / 2 \
uy 40 2 ? 20 1.0 1.0 @ 1
us11.0 1.0 2?2 2?2 ? / G sim i) s
g 2 1.0 ? ? 1.0 1.0
- 3540 1.3 5 \ / 4
@ \ k=3 neighborhood / @
Recommendations: i,, i, N h e
S~ — —

@ Find k nearest neighbors for the user in the user-item matrix.

@ Generate recommendation based on the items liked by the k& nearest
neighbors. E.g., average ratings or use a weighting scheme.
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User-based CF Il

@ Pearson correlation coefficient:

. Z I iy —IXy
SIMPearson (X, Y) = W

@ Cosine similarity:

S Cosine (X, Y) = [, iyT2

@ Jaccard index (only binary data):

. XNy
SlmJaccard(Xa Y) = IXUYI

where x = b,, . and y = by, . represent the user's profile vectors and X
and Y are the sets of the items with a 1 in the respective profile.

Problem

Memory-based. Expensive online similarity computation. J
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[tem-based CF

Produce recommendations based on the relationship between items in the

user-item matrix (Kitts et al., 2000; Sarwar et al., 2001)

Sli i i i i i i i k=3

il - 01 0 030204 0 0.1 w={iy i iy)

Hlo.l - 0.8 09 0 02 0.1 0

) ro={2, 22242725}

;5] 0 08 - 0 04 01 03 0.5

iyf0.3 09 0 - 0 03 0 o1

is102 0 07 0 - 0201 0

is]0.4 02 0.1 03 0.1 - 0 0.1

iZzfo 0103 0 0o o - o0

is]01 0 09 01 0 01 0 Recommendations i
n 0 4.562.75 - 2.67 0 ecommendation: IJ»

© Calculate similarities between items and keep for each item only the values

for the £ most similar items.
@ Use the similarities to calculate a weighted sum of the user's ratings for

fui = > sirui/ D Isyl

related items.

JES; JES;

Regression can also be used to create the prediction.
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ltem-based CF Il

Similarity measures:

@ Pearson correlation coefficient, cosine similarity, Jaccard index
@ Conditional probability-based similarity (Deshpande and Karypis, 2004):

. Freq(z ~
SlmConditional(Iv y) = F:e(:f(a;‘/)) = P(y|1’)
where z and y are two items, Freq(:) is the number of users with the given
item in their profile.

Properties

@ Model (reduced similarity matrix) is relatively small (N x %) and can be fully
precomputed.

@ Item-based CF was reported to only produce slightly inferior results
compared to user-based CF (Deshpande and Karypis, 2004).

@ Higher order models which take the joint distribution of sets of items into
account are possible (Deshpande and Karypis, 2004).

@ Successful application in large scale systems (e.g., Amazon.com)
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Different Model-based CF Techniques

There are many techniques:

o Cluster users (i.e., customer segmentation) and then recommend
items the users in the cluster closest to the active user like.

@ Mine association rules (if-then rules) and then use the rules to
recommend items.

@ Define a null-model (a stochastic process which models usage of
independent items) and then find significant deviation from the
null-model.

@ Learning to rank: Logistic regression, neural networks (deep learning)
and many other machine learning methods.

@ Learn a latent factor model from the data and then use the
discovered factors to find items with high expected ratings.
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Latent Factor Approach

Serious

Braveheart
The Color Purple Amadeus

Lethal Weapon
Sense and |-——
- (] o
toward - toward
females — males
& N

Escapist

Latent factor approach. Koren et al, "Matrix Factorization

Techniques for Recommender Systems," IEEE Computer, 2009

Latent semantic indexing (LSI) developed by the IR community (late 80s)
addresses sparsity, scalability and can handle synonyms
= Dimensionality reduction.
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Matrix Factorization

Given a user-item (rating) matrix M = (r,;), map users and items on a
joint latent factor space of dimensionality k.

@ Each item i is modeled by a vector ¢; € R¥.
e Each user u is modeled by a vector p, € R*.

such that a value close to the actual rating ,; can be computed (e.g., by
the dot product also known as the cosine similarity)

~ o T
Tui =~ Tui = q; Pu J

The hard part is to find a suitable latent factor space!
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Singular Value Decomposition (Matrix Fact.)
Linear algebra: Singular Value Decomposition (SVD) to factorizes M

M=UsvT ]

M is the m x n (users x items) rating matrix of rank r.Columns of U and V are
the left and right singular vectors. Diagonal of ¥ contains the r singular values.
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Singular Value Decomposition (Matrix Fact.)

Linear algebra: Singular Value Decomposition (SVD) to factorizes M

M=U0xvT

)

M is the m x n (users x items) rating matrix of rank r.Columns of U and V are
the left and right singular vectors. Diagonal of ¥ contains the r singular values.

Best rank-k approximation minimizes error ||M — My||r (Frobenius norm).

k

rating matrix user-feature matrix weights item-feature matrix
k
= X > X vr

M, U

rxr rxn
Approximation of M
k using k Factors
mXn mXxr
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Challenges (Matrix Fact.)

e Missing values: Imputation using column means (mean item
ratings). For centered columns the mean is zero.

e SVD is O(m?): Use incremental SVD to 'fold in’ new users/items
without recomputing the whole SVD (Sarwar et al., 2002).

© Calculate user-feature vector from imputed ratings m,,.
Ug = My, VkTZEI

@ Predict ratings
Ma = U Sk Vil

Works similarly for new items.
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Challenges (Matrix Fact.)

Too many missing values are a problem. SVD with missing values by

minimizing the square error on only known ratings (regularized to avoid
overfitting).

argmin Y (rs = ¢"9u)* + Mlail I + lIpul)
2 (u,i)€R

where k are the (u, ) pairs for which r is known.

Good solutions can be found by stochastic gradient descent or alternating
least squares (Koren et al., 2009).

@ For new user (item) compute g; (py).

@ After all ¢; and p,, are known, prediction is very fast:

A T
Twi = q; Du
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Explaining Recommendations

WHAT IS THE TOMATOMETER™?

The Tomatometer rating - based on the published opinions of hundreds of film and television critics - is a trusted
measurement of movie and TV programming quality for millions of moviegoers. It represents the percentage of
professional critic reviews that are positive for a given film or television show.

FROM THE CRITICS FROM RT USERS LIKE YOU!

m

Fresh
The Tomatometer is 60%
or higher.

Rotten
The Tomatometer is 59%
or lower.

Certified Fresh
Movies and TV shows are
Certified Fresh with a
steady Tomatometer of
75% or higher after a set
amount of reviews (80
for wide-release movies,
40 for limited-release
movies, 20 for TV shows),
including 5 reviews from
Top Critics.

Audience Score
Percentage of users who
rate a movie or TVshow

positively.

Learn More »
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Cold Start Problem

What do we recommend to new users for whom we have no ratings yet?
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Cold Start Problem

What do we recommend to new users for whom we have no ratings yet?
@ Recommend popular items
@ Have some start-up questions (e.g., "What are your 10 favorite
movies?")
e Obtain/purchase personal information
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Cold Start Problem

What do we recommend to new users for whom we have no ratings yet?

@ Recommend popular items

@ Have some start-up questions (e.g., "What are your 10 favorite
movies?")
e Obtain/purchase personal information

What do we do with new items?
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Cold Start Problem

What do we recommend to new users for whom we have no ratings yet?

@ Recommend popular items

@ Have some start-up questions (e.g., "What are your 10 favorite
movies?")

e Obtain/purchase personal information

What do we do with new items?
@ Content-based filtering techniques.
@ Use expert/domain knowledge.

@ Pay a focus group to rate new items.

Michael Hahsler (EMIS/SMU) Recommender Systems 2016
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Security and Recommender Systems

o Protect recommender neutrality
From malicious users who want to push their product and can create
fake accounts
Possible solutions: prevent account creation or detect and remove
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Security and Recommender Systems

o Protect recommender neutrality
From malicious users who want to push their product and can create
fake accounts
Possible solutions: prevent account creation or detect and remove

o Protect recommender accuracy
From users who give low-quality, inconsistent ratings.
Possible solutions: Normal de-noising problem
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Security and Recommender Systems

o Protect recommender neutrality
From malicious users who want to push their product and can create
fake accounts
Possible solutions: prevent account creation or detect and remove

o Protect recommender accuracy
From users who give low-quality, inconsistent ratings.
Possible solutions: Normal de-noising problem

o Protect user data (privacy)
From other users and from the service provider

Possible solutions: Use trusted computing infrastructure, pool ratings,
add noise
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Revenue Management
Recommender systems have the potential to increase revenue

@ cross-selling

o up-selling

How about influencing which items are recommended using revenue
considerations?
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Revenue Management

Recommender systems have the potential to increase revenue
@ cross-selling

o up-selling

How about influencing which items are recommended using revenue
considerations?

What about trust + incentive to share information? |
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Open-Source Implementations

@ Apache Mahout: ML library including collaborative filtering (Java)

@ C/Matlab Toolkit for Collaborative Filtering (C/Matlab)

@ Cofi: Collaborative Filtering Library (Java)

@ Crab: Components for recommender systems (Python)

@ easyrec: Recommender for Web pages (Java)

@ LensKit: CF algorithms from GrouplLens Research (Java)

@ MyMedialite: Recommender system algorithms. (C#/Mono)

@ RACOFI: A rule-applying collaborative filtering system

@ Rating-based item-to-item recommender system (PHP/SQL)

@ recommenderlab: Infrastructure to test and develop recommender algorithms

(R)

See http://michael.hahsler.net/research/recommender/ for URLs.
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recommenderlab: Reading Data

100k Movielense ratings data set: The data was collected through
movielens.umn.edu from 9/1997 to 4/1998. The data set contains about
100,000 ratings (1-5) from 943 users on 1664 movies.

R> library( )

R> data(MovieLense)

R> MovielLense

943 x 1664 rating matrix of class ‘realRatingMatrix’ with
99392 ratings.

R> train <- MovieLense[1:900]

R> u <- MovieLense[901]

R> u
1 x 1664 rating matrix of class ‘realRatingMatrix’ with 124
ratings.
R> as(u, YL[[111[1:5]
Toy Story (1995) Babe (1995)
5 3
Usual Suspects, The (1995) Mighty Aphrodite (1995)
5 1
Mr. Holland's Opus (1995)
5
Michael Hahsler (EMIS/SMU) Recommender Systems 2016
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movielens.umn.edu

recommenderlab: Creating Recommendations

R> r <- Recommender (train, method = )

R> r

Recommender of type ‘UBCF’ for ‘realRatingMatrix’
learned using 900 users.

R> recom <- predict(r, u, n = 5)

R> recom

Recommendations as ‘topNList’ with n = 5 for 1 users.
R> as(recom, ) [[1]1]

[1] "Fugitive, The (1993)"

[2] "Shawshank Redemption, The (1994)"

[3] "It's a Wonderful Life (1946)"

[4] "Princess Bride, The (1987)"

[6] "Alien (1979)"
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recommenderlab: Compare Algorithms

R> scheme <- evaluationScheme(train, method = , k=
4,

+ given = 10, goodRating = 3)

R> algorithms <- 1list(

+ “random items® = list(name = , param = NULL),

+ “popular items” = list(name = , param = NULL),
+ “user-based CF = list(name = s

+ param = list(method = , nn = 50)),

+ “item-based CF = list(name = s

+ param = list(method = , k =50)))

R> results <- evaluate(scheme, algorithms,

+ n=c(1, 3, 5, 10, 15, 20, 50))
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recommenderlab: Compare Algorithms Il

R> plot(results, annotate = c(1, 3), legend = )
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Thank you!

This presentation can be downloaded from
http://michael.hahsler.net/ (under publications/talks)

For questions, please contact the author at mhahsler@lyle.smu.edu

recommenderlab is available in R from CRAN.
An introduction can be found at https://cran.r-project.org/web/
packages/recommenderlab/vignettes/recommenderlab.pdf
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